Modeling and optimal steady-state operating points of an ORC waste heat recovery system for diesel engines
H. Koppauer,
W. Kemmetmüller and
A. Kugi
Applied Energy, 2017, vol. 206, issue C, 329-345
Abstract:
Waste heat recovery (WHR) systems based on the Organic Rankine Cycle (ORC) are a promising method to reduce the fuel consumption of heavy-duty diesel engines. This article considers a setup with two parallel evaporators and a hydraulically closed low-pressure part. This gives additional degrees of freedom compared to a pressure balanced low-pressure part and thus allows to increase the recovering efficiency. However, these additional degrees of freedom lead to a higher system complexity, which complicates the calculation of power maximizing steady-state operating points. To determine these power maximizing steady-state operating points, this article develops a model based optimization strategy. For this task, models from the literature are extended and validated by test bench measurements. It is shown that the model has a high accuracy both in steady-state and dynamic operating situations. The optimal steady-state operating points of the considered WHR system are compared with other system topologies, utilizing, e.g., a pressure balanced low-pressure part or a single evaporator. The results of this paper can be utilized as the basis for designing optimal control strategies for the considered WHR system.
Keywords: Waste heat recovery; Mathematical modeling; Optimal operating points; Automotive systems (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917311674
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:206:y:2017:i:c:p:329-345
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.08.151
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().