The influence of microchannel heat sink configurations on the performance of low concentrator photovoltaic systems
Ali Radwan and
Mahmoud Ahmed
Applied Energy, 2017, vol. 206, issue C, 594-611
Abstract:
A new cooling technique for concentrator photovoltaic (CPV) systems is developed using various configurations of microchannel heat sinks. Five distinct configurations integrated with a CPV system are investigated, including a wide rectangular microchannel, a single layer parallel- and counter- flow microchannel, and a double layer parallel- and counter- flow microchannel. A comprehensive, three-dimensional thermo-fluid model for photovoltaic layers, integrated with a microchannel heat sink, is developed. The model is numerically simulated and validated using the available experimental and numerical data. Based on the results, the temperature contours on a plane located at the mid-thickness of the silicon layer are presented at different operating conditions and heat sink configurations. Accordingly, the maximum local temperature can be detected and temperature uniformity can be accurately estimated. Furthermore, at a concentration ratio of 20, the CPV system integrated with a single layer parallel- flow microchannel heat sink configuration (B) achieves the highest cell net power, electrical efficiency, and the minimum cell temperature. On the contrary, at the same operating conditions, the use of a single layer counter-flow microchannel heat sink configuration (C) is found to be the least effective cooling technique. The results of this study can guide industrial designers to adopt compact heat sink configurations and simple designs in the manufacturing process of hybrid CPV-thermal systems.
Keywords: Concentrator photovoltaic systems; Three dimensional thermofluid model; Microchannel heat sinks; Double layer microchannel heat sinks; Parallel flows; Counter flows (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917312357
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:206:y:2017:i:c:p:594-611
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.08.202
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().