EconPapers    
Economics at your fingertips  
 

Applicability of enhancement factor models for CO2 absorption into aqueous MEA solutions

Koteswara Rao Putta, Finn Andrew Tobiesen, Hallvard F. Svendsen and Hanna K. Knuutila

Applied Energy, 2017, vol. 206, issue C, 765-783

Abstract: In many chemical industrial processes, mass transfer across gas-liquid interfaces accompanied by chemical reaction is the governing phenomena. In case of mass transfer accompanied by a chemical reaction in the liquid phase, the reaction will enhance mass transfer and generally the mass transfer enhancement is quantified in terms of an enhancement factor. Large number of enhancement factor models have been developed in literature and used without critical analysis for analyzing pilot data for CO2 absorption into aqueous amines. In order to perform such a critical analysis, 24 models are tested using lab-scale experimental data from four independent apparatuses for CO2 absorption into MEA solutions covering a range of different conditions such as short and long contact times, with and without gas phase resistance, high and low CO2 loadings and temperatures. Of the 24 enhancement factor models tested only six models were found to satisfactorily predict the experimental CO2 fluxes. These were the models based on the simple pseudo-first order reaction assumption, Emodels 1, 2 and 3 by Hatta [2] and Dankwerts [4] respectively, Emodel 20, the deCoursey and Thring [44] model based on Danckwert’s surface renewal theory with unequal diffusivities, Emodel 24, the recently published generalized model by Gaspar and Fosbøl [51] and Emodel 21, the Tufano et al. [67] model based surface renewal theory. All these models were found to work equally well to the discretized penetration model. No significant difference was found between Emodels 1, 2 and 3, indicating that whether one uses as basis a film, penetration or surface renewal model, is of insignificant importance.

Keywords: Enhancement factor model; Mass transfer; Chemical reaction; CO2 absorption; Aqueous alkanolamines (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917311923
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:206:y:2017:i:c:p:765-783

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.08.173

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:206:y:2017:i:c:p:765-783