EconPapers    
Economics at your fingertips  
 

An integrated engineering system for maximizing bioenergy production from food waste

Yingqun Ma, Weiwei Cai and Yu Liu

Applied Energy, 2017, vol. 206, issue C, 83-89

Abstract: In this study, an integrated engineering system was developed for bioenergy production from food waste pretreated with a cost-effective and highly active enzyme mixture, namely fungal mash which was also in-situ produced from food waste. Under the optimized conditions, 141.5g/L of glucose was obtained with 67.5% of total solid reduction after hydrolysis of food waste by fungal mash, while 71.8g/L of bioethanol was produced from subsequent glucose fermentation. The remaining hydrolysis residue was further anaerobically digested for biomethane production with 22.8% of total solid reduction. As the result, about 90% of total solid reduction of food waste was achieved in the integrated engineering system with the outputs of bio-renewable energy in the forms of bioethanol and biomethane. The cost-benefit analysis clearly suggests that the bioenergy production from food waste in the proposed integrated engineering system is technically feasible and economically viable.

Keywords: Food waste; Integrated engineering system; Fungal mash; Bioethanol; Biomethane (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917312175
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:206:y:2017:i:c:p:83-89

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.08.190

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:206:y:2017:i:c:p:83-89