EconPapers    
Economics at your fingertips  
 

Liquid-migration based model for predicting the thermal performance of spiral wound heat exchanger for floating LNG

Zhongdi Duan, Tao Ren, Guoliang Ding, Jie Chen and Xiaoguang Mi

Applied Energy, 2017, vol. 206, issue C, 972-982

Abstract: The spiral wound heat exchanger (SWHE) applied on floating liquefied natural gas (FLNG) vessels suffers performance deterioration due to the sloshing effects of lateral liquid migration and partially-dryout falling film evaporation. For predicting the SWHE performance under the sloshing effects, a mathematical model of floating SWHEs is presented in this paper. In the model, the lateral liquid migration is described by an equation of liquid migration mass flow rate deduced from laminar film momentum conservation; the partially-dryout falling film evaporation is calculated by the dryout area ratio using the weighted average method; the SWHE performance under the sloshing effects is predicted by incorporating the liquid migration mass flow rate and dryout area ratio into the mass and energy conservation equations. The comparisons of model predictions with experimental data show that the deviations of heat capacities are within 4.5% under the sloshing amplitudes among 0–9° and the periods among 6–20s.

Keywords: Spiral wound heat exchanger; Floating LNG; Modeling; Liquid migration; Sloshing conditions (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917312771
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:206:y:2017:i:c:p:972-982

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.09.003

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:206:y:2017:i:c:p:972-982