EconPapers    
Economics at your fingertips  
 

Outlet geometrical impacts on blowoff effects when using various syngas mixtures in swirling flows

A. Valera-Medina, M.O. Vigueras-Zuniga, H. Baej, N. Syred, C.T. Chong and P.J. Bowen

Applied Energy, 2017, vol. 207, issue C, 195-207

Abstract: Lean premixed swirl stabilized combustion is one of the most successful technologies for NOx reduction in gas turbines. The creation of inherent coherent structures such as recirculation zones is one of the main advantages of these flow-stabilized systems since these zones create regions of low velocity that allow heat transfer improvement between reactants and products while increasing residence time for unburned species. However, these effects can also affect the stability of the flame under lean conditions, with various instabilities that can appear during the combustion stage such as flashback, blowoff, autoignition, etc. These processes are even more complex when new alternative fuels are being used for power generation applications. Synthesis gases (syngas) are some of the most concerning out of the available range of fuels as their heating values, flame speeds, ignition energies, etc. are highly dependent on the combination of species that comprise them. Since new gas turbines need to deal with these new blends for fuel flexibility and current lean premixed swirled stabilized systems seem to be the most cost effective-technical option to keep NOx down, gas turbine designers need more information on how to properly design their equipment to achieve stable flames with low NOx whilst avoiding instabilities.

Keywords: Hydrogen; Carbon-monoxide; Syngas; Swirl; Blowoff (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917306232
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:207:y:2017:i:c:p:195-207

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.05.119

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:207:y:2017:i:c:p:195-207