Evaluation of electrochemical models based battery state-of-charge estimation approaches for electric vehicles
Cheng Lin,
Aihua Tang and
Jilei Xing
Applied Energy, 2017, vol. 207, issue C, 394-404
Abstract:
Real-time and accurate state-of-charge (SoC) estimation of lithium-ion batteries is a critical issue for efficient monitoring, control and utilization of advanced battery management systems (BMS) in electric vehicles (EVs). The electrochemical mechanism model can accurately describe the spatially distributed behavior of the internal states of the battery, but the model is complex and computationally huge, which is difficult to simulation in vehicle BMS. To solve these problems, it is necessary to simplify the battery mechanism model and study the model-based SoC estimation approaches. In this paper, two order-reduced models including an average-electrode model (AEM) and a single particle model (SPM) are first proposed. Additionally, the reduced-models combined with algorithms, including an extended Kalman filter (EKF), a sliding-mode observer (SMO) with a uniform reaching law (URL) and an SMO with an exponential reaching law (ERL), are employed to design battery SoC observers. To achieve an optimal trade-off between the tracking accuracy and convergence ability, the performances of these approaches are compared under an Urban Dynamometer Driving Schedule (UDDS) test. The comparison results indicate that the SPM-EKF approach can obtain a reliable battery voltage response and a more accurate SoC estimation than other approaches.
Keywords: Electric vehicles (EVs); Electrochemical model; Extended Kalman filter (EKF); SoC estimation (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191730613X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:207:y:2017:i:c:p:394-404
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.05.109
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().