EconPapers    
Economics at your fingertips  
 

Quantification of heat losses through building envelope thermal bridges influenced by wind velocity using the outdoor infrared thermography technique

Małgorzata O'Grady, Agnieszka A. Lechowska and Annette M. Harte

Applied Energy, 2017, vol. 208, issue C, No S0306261917313284, 1038-1052

Abstract: Improving the thermal performance of the existing building stock is essential to significantly reduce the overall energy consumption in the building sector. A key objective is the retrofitting of the existing building envelope. A necessary first step in the building envelope optimization process is the assessment of its actual thermal performance. This assessment should be repeated after retrofitting to clearly define the improvements that were made and the heat loss reduction that was achieved. In this study, an efficient, non-destructive, in-situ measurement method, based on an outdoor infrared thermographic survey, is developed to determine the thermal bridging performance. As wind velocity significantly influences the heat losses through the building envelope, this study includes quantification of the wind velocity impact on the Ψ-value. This was assessed by undertaking ITT of the same thermal bridge at various wind velocities, in a controlled environment, in a hot box device. The results showed that the Ψ-value is highly dependent on wind velocity so that measurement of the Ψ-value taken at different wind conditions cannot be directly compared. An adjustment procedure is proposed that can be used to convert the Ψ-value measured at any wind velocity to a standard value corresponding to a velocity of 4m/s. From a practical point of view, this adjustment procedure makes the methodology widely applicable.

Keywords: Building envelope; Hot box; Forced convection; Infrared thermography technique; Quantitative thermography; Thermal bridging (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917313284
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:208:y:2017:i:c:p:1038-1052

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.09.047

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:208:y:2017:i:c:p:1038-1052