Comparative study of the transient natural convection in an underground water pit thermal storage
Chun Chang,
Zhiyong Wu,
Helena Navarro,
Chuan Li,
Guanghui Leng,
Xiaoxia Li,
Ming Yang,
Zhifeng Wang and
Yulong Ding
Applied Energy, 2017, vol. 208, issue C, No S0306261917313089, 1162-1173
Abstract:
This study investigated the transient natural convection phenomenon in an underground water pit thermal storage with heat losses through the surrounding walls. An experimental test rig was built up, and a numerical model was developed to obtain the characteristics of the thermal stratification in the water pit thermal storage. Fluid properties are assumed to be constant, except for the density changes with temperature which is treated using the Boussinesq approximation. The simulations of temperature profiles are reasonably proved by experiments with the maximum relative errors of ±9.77%. The results show that water temperature decreases close to the walls due to the heat losses, which leads to a downward flow along the inclined sidewalls. A slight upward flow occurs at the center of the water pit thermal storage, which lifts the warmer water to a higher level. Asa result, the buoyancy-driven flow gradually builds up the thermal stratification in the water pit thermal storage. The modelling results also show that the values of the average Nusselt numbers on the inner surface of the inclined sidewalls and the bottom of the tank are much higher than that of the top thermal insulation layer. The thermal energy storage efficiency decreases rapidly in the first five minutes from 100% to 83.19% due to the intense heat transfer, and then tends to level off at the end of 40min. The maximum velocity of the natural convection appears close to the upper part of the inclined sidewalls, and it decreases with the cooling process evolved. The present work has a valuable attempt to fill the gap in the existing studies and is useful for guiding the water pit thermal storage design.
Keywords: Natural convection; Water pit thermal storage; Boussinesq approximation; Buoyancy-driven flow; Thermal stratification; Efficiency (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917313089
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:208:y:2017:i:c:p:1162-1173
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.09.036
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().