Using 3DVAR data assimilation to measure offshore wind energy potential at different turbine heights in the West Mediterranean
Alain Ulazia,
Jon Sáenz,
Gabriel Ibarra-Berastegui,
Santos J. González-Rojí and
Sheila Carreno-Madinabeitia
Applied Energy, 2017, vol. 208, issue C, No S0306261917313144, 1232-1245
Abstract:
In this article, offshore wind energy potential is measured around the Iberian Mediterranean coast and the Balearic Islands using the WRF meteorological model without 3DVAR data assimilation (the N simulation) and with 3DVAR data assimilation (the D simulation). Both simulations have been checked against the observations of six buoys and a spatially distributed analysis of wind based on satellite data (second version of Cross-Calibrated Multi-Platform, CCMPv2), and compared with ERA-Interim (ERAI). Three statistical indicators have been used: Pearson’s correlation, root mean square error and the ratio of standard deviations. The simulation with data assimilation provides the best fit, and it is as good as ERAI, in many cases at a 95% confidence level. Although ERAI is the best model, in the spatially distributed evaluation versus CCMPv2 the D simulation has more consistent indicators than ERAI near the buoys. Additionally, our simulation’s spatial resolution is five times higher than ERAI. Finally, regarding the estimation of wind energy potential, we have represented the annual and seasonal capacity factor maps over the study area, and our results have identified two areas of high potential to the north of Menorca and at Cabo Begur, where the wind energy potential has been estimated for three turbines at different heights according to the simulation with data assimilation.
Keywords: Offshore wind energy potential; WRF; WRFDA; Data assimilation; Mesoscale model; Fluid mechanics (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917313144
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:208:y:2017:i:c:p:1232-1245
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.09.030
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().