A computationally efficient implementation of a full and reduced-order electrochemistry-based model for Li-ion batteries
L. Xia,
E. Najafi,
Z. Li,
H.J. Bergveld and
M.C.F. Donkers
Applied Energy, 2017, vol. 208, issue C, No S0306261917313090, 1285-1296
Abstract:
Lithium-ion batteries are commonly employed in various applications owing to high energy density and long service life. Lithium-ion battery models are used for analysing batteries and enabling power control in applications. The Doyle-Fuller-Newman (DFN) model is a popular electrochemistry-based lithium-ion battery model which represents solid-state and electrolyte diffusion dynamics and accurately predicts the current/voltage response using a set of nonlinear partial differential equations. However, implementation of the full DFN model requires significant computation time. This paper proposes a computationally efficient implementation of the full DFN battery model, which is convenient for real-time applications. The proposed implementation is based on applying model order reduction to a spatial and temporal discretisation of the governing model equations. For model order reduction, we apply proper orthogonal decomposition and discrete empirical interpolation method, which leads to a set of reduced order nonlinear algebraic equations. These equations are solved using a particular numerical scheme, based on a damped Newton’s method. In a simulation study, the computational efficiency of the proposed implementation is shown and the resulting accuracy is presented.
Keywords: Lithium-ion batteries; Electrochemistry-based model; Partial differential equations; Model order reduction; Proper orthogonal decomposition (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917313090
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:208:y:2017:i:c:p:1285-1296
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.09.025
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().