A data-driven methodology to support pump performance analysis and energy efficiency optimization in Waste Water Treatment Plants
Dario Torregrossa,
Joachim Hansen,
Francesc Hernández-Sancho,
Alex Cornelissen,
Georges Schutz and
Ulrich Leopold
Applied Energy, 2017, vol. 208, issue C, No S0306261917312928, 1430-1440
Abstract:
Studies and publications from the past ten years demonstrate that generally the energy efficiency of Waste Water Treatment Plants (WWTPs) is unsatisfactory. In this domain, efficient pump energy management can generate economic and environmental benefits. Although the availability of on-line sensors can provide high-frequency information about pump systems, at best, energy assessment is carried out a few times a year using aggregated data. Consequently, pump inefficiencies are normally detected late and the comprehension of pump system dynamics is often not satisfactory. In this paper, a data-driven methodology to support the daily energy decision-making is presented. This innovative approach, based on fuzzy logic, supports plant managers with detailed information about pump performance, and provides case-based suggestions to reduce the pump system energy consumption and extend pump life spans. A case study, performed on a WWTP in Germany, shows that it is possible to identify energy inefficiencies and case-based solutions to reduce the pump energy consumption by 18.5%.
Keywords: Waste Water Treatment Plants (WWTPs); Energy benchmarking; Time series analysis; Pump system efficiency; Fuzzy logic (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917312928
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:208:y:2017:i:c:p:1430-1440
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.09.012
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().