Liquefaction of food waste and its impacts on anaerobic biodegradability, energy ratio and economic feasibility
S. Kavitha,
J. Rajesh Banu,
A. Arul Priya,
Do Khac Uan and
Ick Tae Yeom
Applied Energy, 2017, vol. 208, issue C, No S0306261917314630, 228-238
Abstract:
In the present study, a new and novel attempt was made to investigate the effect of liquefaction (20–60%) on energy efficient gaseous biofuel recovery and cost during chemo thermo disperser liquefaction of food waste (CTDL). The outcome of the study revealed that rpm (10,000), specific energy input (174 kJ/kg TS), disintegration time (5 min) and energy efficiency of about 11.1 kg SCOD/KWh were considered as optimum in terms of energy and cost. The cost incurred to achieve 20–40% liquefaction was estimated to be 0.0132–0.0168 USD and found to be comparatively very low than the cost incurred (0.0367–0.0547) to achieve 50–60% liquefaction. The biodegradability results showed that a significant increment in biodegradability was achieved (from 0.26 gCOD/gCOD to 0.8 gCOD/gCOD) when the liquefaction was increased from 30 to 40% and an insignificant increment in biodegradability (from 0.8 gCOD/gCOD to 0.84 gCOD/gCOD) was achieved when the liquefaction was increased from 40 to 60%, respectively. The impact of liquefaction on energy balance and cost at tonnage level revealed that 40% liquefaction was considered to be profitable with energy ratio and net profit of about 1.12 and 93 USD/Ton, respectively.
Keywords: Food waste; Liquefaction; Specific energy; Methane; Biodegradability; Energy balance analysis (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917314630
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:208:y:2017:i:c:p:228-238
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.10.049
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().