Thermodynamic analysis and optimization of a novel combined power and ejector refrigeration cycle – Desalination system
Mohsen Sadeghi,
Mortaza Yari,
S.M.S. Mahmoudi and
Moharram Jafari
Applied Energy, 2017, vol. 208, issue C, No S0306261917314617, 239-251
Abstract:
A novel multi-generation hybrid system is proposed and analyzed in details from the viewpoint of thermodynamics. Using a zeotropic mixture as working fluid, the system consists of a power and ejector refrigeration cycle as well as a desalination system based on humidification and dehumidification processes. A parametric study is performed to specify the decision variables influencing the system performance prior to the optimization process. The optimization is conducted in two cases. In the first case, a single-objective optimization is carried out to maximize the overall exergy efficiency. In the second case, a multi-objective optimization is accomplished considering the net output power and refrigeration capacity as the objective functions.
Keywords: Exergy; Multi-generation system; Ejector; Zeotropic mixture; Desalination (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917314617
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:208:y:2017:i:c:p:239-251
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.10.047
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().