EconPapers    
Economics at your fingertips  
 

Energy-efficient solvent regeneration in enzymatic reactive absorption for carbon dioxide capture

Mathias Leimbrink, Stephanie Sandkämper, Leigh Wardhaugh, Dan Maher, Phil Green, Graeme Puxty, Will Conway, Robert Bennett, Henk Botma, Paul Feron, Andrzej Górak and Mirko Skiborowski

Applied Energy, 2017, vol. 208, issue C, No S0306261917314551, 263-276

Abstract: Although recent studies on the application of enzyme-catalyzed reactive absorption of carbon dioxide (CO2) with thermodynamically favorable solvents such as tertiary amine N-methyldiethanolamine (MDEA) have demonstrated competitiveness with kinetically favorable solvents such as primary amine monoethanolamine (MEA), experimental data on the desorption of CO2 in MDEA are scarce. However, these data are necessary to validate the energetic benefit expected from an enzyme-catalyzed reactive absorption process with an aqueous MDEA solvent. To bridge this gap, the current work presents the experimental results of aqueous MDEA solvent regeneration at the pilot scale with consideration of different solvent flow rates, CO2 loadings and applied reboiler duties. Furthermore, a process model that accurately describes the experimental data was developed to evaluate the energy requirements in a closed-loop absorption-desorption process. For this purpose, the desorption process model was extended using a previously validated enzymatic reactive absorption model to determine the energy efficiency of the overall enzymatic reactive absorption-desorption process. Although the MEA benchmark process requires a specific reboiler duty of approximately 3.8MJ·kgCO2-1, it was found that this value could be reduced by more than 40% to 2.13MJ·kgCO2-1 with use of the enzymatic reactive absorption process based on aqueous MDEA solvent.

Keywords: Solvent regeneration; Pilot scale testing; Rate-based modeling; Energy efficiency; Carbon capture; Enzyme carbonic anhydrase (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917314551
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:208:y:2017:i:c:p:263-276

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.10.042

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:208:y:2017:i:c:p:263-276