EconPapers    
Economics at your fingertips  
 

A novel hybrid system based on a new proposed algorithm—Multi-Objective Whale Optimization Algorithm for wind speed forecasting

Jianzhou Wang, Pei Du, Tong Niu and Wendong Yang

Applied Energy, 2017, vol. 208, issue C, No S0306261917314307, 344-360

Abstract: In recent years, managers and researchers have paid increasing attention to accurate and stable wind speed prediction due to its significant effect on power dispatching and power grid security. However, most previous research has focused only on enhancing either accuracy or stability, with few studies addressing the two issues, simultaneously. This task is challenging due to the intermittency and complex fluctuations of wind speed. Therefore, we proposed a novel hybrid system based on a newly proposed called the MOWOA, which includes four modules: a data preprocessing module, optimization module, forecasting module, and evaluation module. An effective decomposing technique is also applied to eliminate redundant noise and extract the primary characteristics of wind speed data. In order to obtain high accuracy, and stability for wind speed prediction simultaneously, and overcome the weaknesses of single objective optimization algorithms, the optimization module of the proposed MOWOA is utilized to optimize the weights and thresholds of the Elman neutral network used in the forecasting module. Finally, the evaluation module, which includes hypothesis testing, evaluation criteria, and three experiments, is introduced perform comprehensive evaluation on the system. The results indicate that the proposed MOWOA performs better than the two recently developed MOALO and MODA algorithms, and that the proposed hybrid model outperforms all sixteen models used for comparison, which demonstrates its superior ability to generate forecasts in terms of forecasting accuracy and stability.

Keywords: Wind speed forecasting; Multi-Objective Whale Optimization Algorithm; Hybrid forecasting system; Forecasting accuracy and stability (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917314307
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:208:y:2017:i:c:p:344-360

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.10.031

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:208:y:2017:i:c:p:344-360