EconPapers    
Economics at your fingertips  
 

Palladium-nitrogen coordinated cobalt alloy towards hydrogen oxidation and oxygen reduction reactions with high catalytic activity in renewable energy generations of proton exchange membrane fuel cell

Arpita Ghosh, Priji Chandran and S. Ramaprabhu

Applied Energy, 2017, vol. 208, issue C, No S0306261917314381, 37-48

Abstract: Oxygen reduction reaction (ORR) is one of the most important processes in energy conversion and conservation in proton exchange membrane fuel cell (PEMFC). In PEMFC, developing non-platinum based catalyst by understanding the catalytic activity for both oxygen reduction reaction (ORR) and hydrogen oxidation reaction (HOR) is essential for energy storage/conversion. Herein, we report preparation of such a bi-functional and durable catalyst consists of palladium and nitrogen coordinated cobalt and its catalytic activity is discussed methodically. Palladium cobalt bimetallic alloy nanoparticles dispersed over graphitic carbon nitride (Pd-Co/gCN) serves as an efficient anode and cathode catalyst in proton exchange membrane fuel cell for energy conversion. Incorporation of cobalt with palladium in nitrogen rich support material optimally modifies the bond strength of palladium-hydrogen (Pd-H) complex and promotes HOR, results in significant improvement of overpotential at the anode whereas, the nitrogen coordinated cobalt predominantly enhances the ORR activity at the cathode in acidic medium. Effects of mass transfer on the kinetics of ORR were investigated with rotating disc electrode (RDE). The hydrodynamic voltammograms were investigated to determine the kinetic parameters using the Koutecky–Levich equation. Our study presents an experimental realization of unveiling a good power density with high fuel utilization efficiency in a single cell for electrochemical energy conversion with complete elimination of platinum.

Keywords: Proton exchange membrane fuel cell; Pt-free bimetallic electrocatalyst; Hydrogen oxidation reaction (HOR); Oxygen reduction reaction (ORR); Single cell measurement (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917314381
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:208:y:2017:i:c:p:37-48

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.10.022

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:208:y:2017:i:c:p:37-48