Trace compounds impact on SOFC performance: Experimental and modelling approach
Davide Papurello,
Chiara Iafrate,
Andrea Lanzini and
Massimo Santarelli
Applied Energy, 2017, vol. 208, issue C, No S0306261917313715, 637-654
Abstract:
Issues related to SOFCs performance and durability are strictly dependent on the feeding fuel quality. SOFC capability to be fed with fuels different from hydrogen opens to scenarios in which a big variety of fuels can be used at the aim. Unfortunately, problems related to anode deactivation due to the contaminants presence can arise. The present work investigates the performance of anode supported solid oxide fuel cells in case of co-feeding of different trace compounds. Electrochemical impedance spectroscopy is the investigation technique used to analyze the impedance spectra. Typical biogas from OFMSW trace contaminants that follow an initial failure in the cleaning system, such as sulphur, aromatic compounds and siloxanes, have been simultaneously tested. Tests showed that the most deleterious impact for the SOFC was due to the H2S action. This influences mostly the electrochemical losses respect to diffusion losses, even if this last are not null and can be accounted as a secondary effect. On the contrary, the co-presence of D4 and H2S mitigates in the short-term the effect that the only D4 produces when fed with biogas. The most relevant consequence produced by C7H8 was recorded in the low frequency of Nyquist plot, affecting mainly the mass transport phenomena. Experimental tests are accompanied by the implementation of the fuel cell model through COMSOL Multiphysics software to study the effect of pollutants on fuel cell performance.
Keywords: SOFC; Biogas; Siloxane; Sulfur; Trace compounds; Comsol multiphysics software (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917313715
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:208:y:2017:i:c:p:637-654
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.09.090
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().