Dynamic modeling and control analysis of a methanol autothermal reforming and PEM fuel cell power system
Dimitris Ipsakis,
Martha Ouzounidou,
Simira Papadopoulou,
Panos Seferlis and
Spyros Voutetakis
Applied Energy, 2017, vol. 208, issue C, No S0306261917313594, 703-718
Abstract:
In the present study, a rigorous dynamic and control-oriented model is developed towards accurately describing the autonomous operation of a methanol reforming-fuel cell power system (up to 5kWel). The system consists of an autothermal steam reformer that provides hydrogen to a polymer electrolyte membrane (PEM) fuel cell. A purification stage (preferential oxidation reactor) intercedes between the steam reformer and the fuel cell and maintains CO levels below 10–50ppm, while a heat-exchanging network (comprising of two coolers and a burner) is employed towards managing a well-balanced autothermal operation. The proposed dynamic model is developed on the basis of describing accurately the evolving chemical and electrochemical interactions between the subsystems and utilizes a group of partial/ordinary differential equation (reactors and heat exchangers) along with a set of non-linear equations (reaction kinetics and current-voltage dependence). Based on the system main operating features, a control structure through the implementation of PI controllers is proposed for the control of (a) the reformer feed and exit temperature through methanol burning and steam reformer feed flowrate manipulation respectively, (b) CO concentration through O2/CO feed ratio manipulation, (c) power production (specified by the fuel cell operation current) through methanol reformer feed and (d) subsystem exit temperatures through coolant flowrate manipulation. An overall simulation case study reveals the proper selection of system manipulated and controlled variables towards achieving the applied operating set-points, where it is shown that the system sustains a flexible operation, along with fast start-up and dynamic transients.
Keywords: Autothermal methanol reforming; PEM fuel cell; Autonomous power system; Hydrogen; Dynamic modelling; Control (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917313594
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:208:y:2017:i:c:p:703-718
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.09.077
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().