EconPapers    
Economics at your fingertips  
 

Effects of oxygen carrier mole fraction, velocity distribution on conversion performance using an experimentally validated mathematical model of a CLC fuel reactor

R. Ben-Mansour, H. Li and M.A. Habib

Applied Energy, 2017, vol. 208, issue C, No S030626191731351X, 803-819

Abstract: Due to the severity of the worldwide climate change problem and the ocean acidification problem, chemical looping combustion (CLC) technology is studied worldwide by researchers in order to meet the urgency of carbon emission reduction after its concept has been put forward. An experimentally validated computer model has been implemented in Ansys-Fluent code with the most appropriate kinetic model implemented in User Define Functions. The validated model has been used to carry out a numerical study on a model fuel reactor using CaSO4 as oxygen carrier and H2 as fuel; is conducted in the present work. Effects of mole fraction of CaS, operating temperature, superficial feeding velocity magnitude of fuel and the diameter of oxygen carrier particles were discussed. The results indicate that the superficial feeding velocity of gaseous fuel has significant effects on the flow condition with fuel reactor and conversion performance, while operating temperature mainly affects the fuel conversion. The effects of particle diameter on flow condition within FR are obvious but insignificant on conversion performance of fuel. The mole fraction of CaS has the least effect among these three parameters. Several velocity distributions are also studied. The rectangle-trianble distributor results in better bubbles distributions, but the gain of higher fuel conversion rate is insignificant due to the low chemical activity of OC used in this study.

Keywords: Chemical looping combustion; Multiphase flow; Numerical study; Chemical reaction kinetics; Distributor (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191731351X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:208:y:2017:i:c:p:803-819

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.09.067

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:208:y:2017:i:c:p:803-819