Machine learning approaches for estimating commercial building energy consumption
Caleb Robinson,
Bistra Dilkina,
Jeffrey Hubbs,
Wenwen Zhang,
Subhrajit Guhathakurta,
Marilyn A. Brown and
Ram M. Pendyala
Applied Energy, 2017, vol. 208, issue C, No S0306261917313429, 889-904
Abstract:
Building energy consumption makes up 40% of the total energy consumption in the United States. Given that energy consumption in buildings is influenced by aspects of urban form such as density and floor-area-ratios (FAR), understanding the distribution of energy intensities is critical for city planners. This paper presents a novel technique for estimating commercial building energy consumption from a small number of building features by training machine learning models on national data from the Commercial Buildings Energy Consumption Survey (CBECS). Our results show that gradient boosting regression models perform the best at predicting commercial building energy consumption, and can make predictions that are on average within a factor of 2 from the true energy consumption values (with an r2 score of 0.82). We validate our models using the New York City Local Law 84 energy consumption dataset, then apply them to the city of Atlanta to create aggregate energy consumption estimates. In general, the models developed only depend on five commonly accessible building and climate features, and can therefore be applied to diverse metropolitan areas in the United States and to other countries through replication of our methodology.
Keywords: Commercial building energy consumption; Modeling; Machine learning; CBECS (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917313429
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:208:y:2017:i:c:p:889-904
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.09.060
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().