EconPapers    
Economics at your fingertips  
 

Challenges and uncertainties of ex ante techno-economic analysis of low TRL CO2 capture technology: Lessons from a case study of an NGCC with exhaust gas recycle and electric swing adsorption

Mijndert van der Spek, Andrea Ramirez and André Faaij

Applied Energy, 2017, vol. 208, issue C, No S0306261917313405, 920-934

Abstract: this work addresses the methodological challenges of undertaking techno-economic assessments of very early stage (technology readiness level 3–4) CO2 capture technologies. It draws lessons from a case study on CO2 capture from a natural gas combined cycle with exhaust gas recycle and electric swing adsorption technology. The paper shows that also for very early stage technologies it is possible to conduct techno-economic studies that give a sound first indication of feasibility, providing certain conditions are met. These conditions include the availability of initial estimates for the energy use of the capture technology, either from bench scale measurements, or from rigorous process models, and the possibility to draw up a generic (high level) equipment list. The paper shows that for meaningful comparison with incumbent technologies, the performance of very early stage technologies needs to be projected to a future, commercial state. To this end, the state of the art methods have to be adapted to control for the development and improvements that these technologies will undergo during the R&D cycle. We call this a hybrid approach. The paper also shows that CO2 capture technologies always need to be assessed in sympathy with the CO2 source (e.g. power plant) and compression plant, because otherwise unreliable conclusions could be drawn on their feasibility. For the case study, it is concluded that electric swing adsorption is unlikely to become economically competitive with current technologies, even in a highly optimised future state, where 50% of the regeneration duty is provided by LP steam and 50% by electricity: the net efficiency of an NGCC with EGR and optimised ESA (49.3%LHV; min–max 45.8–50.4%LHV) is lower than that of an NGCC with EGR and standard MEA (50.4%LHV). Also, investment and operational costs are higher than MEA, which together with ESA’s lower efficiency leads to an unfavourable levelised cost of electricity: 103€/MWh (min–max 93.89–117.31€/MWh) for NGCC with ESA, versus 91€/MWh for NGCC with MEA.

Keywords: Techno-economic analysis; Electric swing adsorption; Hybrid approach; Solid sorbents; System analysis; Technological learning (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917313405
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:208:y:2017:i:c:p:920-934

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.09.058

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:208:y:2017:i:c:p:920-934