A holarchic approach for multi-scale distributed energy system optimisation
Julien F. Marquant,
Ralph Evins,
L. Andrew Bollinger and
Jan Carmeliet
Applied Energy, 2017, vol. 208, issue C, No S0306261917313399, 935-953
Abstract:
The benefits of decentralised energy systems can be realised through the optimal siting of distributed energy systems and the design of highly interlinked district heating networks within existing electrical and gas networks. The problem is often formulated as a Mixed Integer Linear Programming (MILP) problem. MILP formulations are efficient and reliable, however the computational burden increases drastically with the number of integer variables, making detailed optimisation infeasible at large urban scales. To tackle complex problems at large scale the development of an efficient and robust simplification method is required. This paper presents an aggregation schema to facilitate the optimisation of urban energy systems at city scale.
Keywords: Urban energy system; Density-based clustering; Multi-scale modelling; Aggregation method; Energy hub; Multi-objective optimisation (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917313399
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:208:y:2017:i:c:p:935-953
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.09.057
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().