EconPapers    
Economics at your fingertips  
 

Assessment of recirculation batch mode operation in bufferless Bio-cathode microbial Fuel Cells (MFCs)

Chin-Tsan Wang, Yan-Sian Huang, Thangavel Sangeetha and Wei-Mon Yan

Applied Energy, 2018, vol. 209, issue C, 120-126

Abstract: Biocathode microbial fuel cells are cost-effective and environmentally sustainable bio-electrochemical devices. However, the usage of buffer solution will significantly reduce the feasibility of the MFCs (Microbial Fuel Cells) for practical applications in the future. Therefore, in this study the function of PBS (Phosphate Buffer Solution) was substituted by application of recirculation flow mode to enhance the proton transfer. An innovative and novel endeavor of inserting a honey comb structure into an MFC for uniform influent flow was also performed. pH and power performance were investigated in aerobic biocathode MFCs at recirculation flow rates of 0 ml/min, 4 ml/min, 40 ml/min, and 240 ml/min. The results showed that higher recirculation flow rates maintained a steady pH after 1 h of MFC operation and efficiently reduced the time to achieve the favorable pH environment (7.0–7.55) for the growth of electrochemically active bacteria (EAB). Furthermore, the highest power density of 5.71 mW/m2 and lowest charge transfer resistance of 267.7 Ω were obtained at the flow rate of 40 ml/min. But, extremely high flow rate of 240 ml/min was found to be detrimental to the biocathode MFC and reduced the power density and charge transfer resistance. Therefore, these findings would provide useful and progressive insights for pilot and industrial scale studies with bufferless biocathode MFCs in the future.

Keywords: Microbial fuel cell; Bufferless; Bio-cathode; Honey comb structure; Flow straightener; Recirculation flow rate (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917314952
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:209:y:2018:i:c:p:120-126

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.10.074

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:209:y:2018:i:c:p:120-126