EconPapers    
Economics at your fingertips  
 

Energy and productivity efficient vacuum pressure swing adsorption process to separate CO2 from CO2/N2 mixture using Mg-MOF-74: A CFD simulation

Naef A.A. Qasem and Rached Ben-Mansour

Applied Energy, 2018, vol. 209, issue C, 190-202

Abstract: Quantitatively, carbon dioxide is the main gas emitted from the burning of fossil fuels; thus, it is the primary contributor to global warming. However, climate change could be mitigated using “carbon capture and storage” (CCS) methods. CO2 separation by physical adsorption is a promising technology to achieve CO2 capture with minimum energy costs. Mg-MOF-74 is a distinguished adsorbent amongst porous materials owing to its high CO2 uptake under flue gas conditions. In this study, a vacuum pressure swing adsorption (VPSA) process composed of five steps (pressurization, feed, rinse, blowdown, and purge) for separating CO2 from a CO2/N2 mixture using Mg-MOF-74 was mathematically modeled. Two- and three-dimensional computational fluid dynamics (CFD) models were developed using a user-defined-function (UDF, written in C) linked to the ANSYS Fluent program. The models have been validated against published pressure swing adsorption experimental data. The regeneration (blowdown and purge) time has been tuned to explore the performance improvement for the VPSA process. The key optimum performance indices for VPSA in terms of CO2 purity, recovery, productivity, and process power consumption were found to be 95.3%, 94.8%, 0.50 kg_CO2 h−1 kg_MOF−1, and 68.71 kW h tonne_CO2−1, respectively. The corresponding operating carbon capture cost has been evaluated as $6.87 tonne_CO2−1 for a 500-MW post-combustion power plant. These CO2 productivity and power consumption performances represent a significant enhancement in CO2 separation using physical adsorption technology compared to those reported in the literature.

Keywords: Adsorption; Carbon capture; Carbon-dioxide; Separation; VPSA; CFD; Mg-MOF-74 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191731543X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:209:y:2018:i:c:p:190-202

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.10.098

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:209:y:2018:i:c:p:190-202