Investigation of soot formation and oxidation of ethanol and butanol fuel blends in a DISI engine at different exhaust gas recirculation rates
M. Koegl,
B. Hofbeck,
S. Will and
L. Zigan
Applied Energy, 2018, vol. 209, issue C, 426-434
Abstract:
The soot formation and in-cylinder soot oxidation in an optically accessible DISI-engine is analyzed for gasoline-ethanol and -butanol mixtures. The volumetric extinction measurement technique used is capable of determining quantitative soot volume fractions and in-cylinder soot oxidation at low gas and soot particle temperatures. Toliso, a fuel mixture containing isooctane and toluene (65 vol% isooctane and 35 vol% toluene) was utilized as a surrogate gasoline fuel. The EGR-dependence (EGR-exhaust gas recirculation) on soot formation and -oxidation of the fuels was studied at part load operation. The studied operating point is characterized by an early injection timing leading to distinct piston wetting and a sooting pool-fire. The measurements without EGR showed a low soot formation for Toliso, while EGR leads to higher soot formation. E20 and B20 showed a strong sooting behaviour without EGR. An EGR increase reduced the soot formation for E20 and B20. It can be concluded that the physical fuel properties determine the spray formation and piston wetting. The fuel dependent evaporation of the liquid wall film as well as local mixing conditions play a major role on soot formation and oxidation.
Keywords: High-speed; Extinction; Soot luminescence; Particle formation; Soot oxidation; Pool-fire (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917316094
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:209:y:2018:i:c:p:426-434
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.11.034
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().