Ni5P4-NiP2 nanosheet matrix enhances electron-transfer kinetics for hydrogen recovery in microbial electrolysis cells
Weiwei Cai,
Wenzong Liu,
Haishu Sun,
Jiaqi Li,
Liming Yang,
Meijun Liu,
Shenlong Zhao and
Aijie Wang
Applied Energy, 2018, vol. 209, issue C, 56-64
Abstract:
Due to the crucial role of the cathodic catalyst in the electron-transfer rate and hydrogen recovery in bioelectrochemical systems, coupling nickel and earth-abundant transition metal phosphides with high catalysis efficiency and low cost could provide a promising alternative to Pt/C catalysts. Herein, we fabricated a three-dimensional (3D) biphasic Ni5P4-NiP2 nanosheet matrix to act as a cathodic tunnel for electron transfer for hydrogen coupled with a microbially catalyzed bioanode. Benefiting from the “ensemble effect” of P, the Tafel slope obtained from voltammetry reflected the improved catalytic performance (83.9 mV/dec vs. 113.6 mV/dec) and contributed to a higher hydrogen production rate of 9.78 ± 0.38 mL d−1 cm−2 that was 1.5 times faster than that of NF, which was even faster than that reported for commercial Pt/C. The impedance resistance obtained using electrochemical impedance spectroscopy (EIS) showed that the NF-P simultaneously exhibited <10% electron loss, corresponding to a 2.5-fold improvement over the ∼25% electron loss of NF. The long-term durability of the new material was verified through long-term operation with high performance in practice. It is proved that a good catalytic property of cathode was well maintained, even with microorganism attachment on NF-P cathode.
Keywords: Nickel foam phosphide; Microbial electrolysis cell; Hydrogen recovery; Electron transfer (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917315106
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:209:y:2018:i:c:p:56-64
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.10.082
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().