EconPapers    
Economics at your fingertips  
 

Dynamic effects in a salinity-gradient solar-pond heating system

M.T. Kangas and P.D. Lund

Applied Energy, 1985, vol. 20, issue 3, 189-205

Abstract: Numerical computer models have been developed to study the dynamics of a salt-gradient solar-pond heating system in a northern cold climate. The models are applicable for predicting the temperature and salinity profiles in a pond. Special emphasis is laid on the behaviour of the upper convective layer. In the calculations, the solar pond is considered as a part of a community-scale residential heating system and the effects of the pond's dynamics on the overall system performance are assessed. All calculations were made with 1-h time steps for a hypothetical pond in Helsinki (60° N). The results indicate that the consideration of the dynamics of the salinity profile may reduce the pond's bottom temperature by 10°C in comparison with a static salt distribution. The maintenance of the salinity gradient would allow a maximum surface washing interval of 5 weeks without severely affecting the pond's performance. Then the daily salt consumption would be about 40 g per square metre. For regions with cold winters, the surface should be washed with fresh water, just before surface freezing takes place, to prevent shrinking of the non-convective stabilizing gradient zone. It was also observed that a solar-pond heating system may reach considerable solar fractions in a northern climate.

Date: 1985
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0306-2619(85)90023-6
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:20:y:1985:i:3:p:189-205

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:20:y:1985:i:3:p:189-205