EconPapers    
Economics at your fingertips  
 

Topological properties of medium voltage electricity distribution networks

Sathsara Abeysinghe, Jianzhong Wu, Mahesh Sooriyabandara, Muditha Abeysekera, Tao Xu and Chengshan Wang

Applied Energy, 2018, vol. 210, issue C, 1112 pages

Abstract: With a large penetration of low carbon technologies (LCTs) at medium voltage and low voltage levels, electricity distribution networks are undergoing rapid changes. Much research has been carried out to analyse the impact of employing LCTs in distribution networks based on either real or synthetic network samples. Results of such studies are usually case specific and of limited applicability to other networks. Topological properties of a distribution networks describe how different network components are located and connected, which are critical for the investigation of network performance. However, the number of network modelling and simulation platforms are limited in the open literature which can provide random realistic representations of electricity distribution networks. Thus, it is difficult to arrive to generalized and robust conclusions on impact studies of LCTs. As the initial step to bridge this gap, this paper studies the topological properties of real-world electricity distribution networks at the medium voltage level by employing the techniques from complex networks analysis and graph theory. The networks have been modelled as graphs with nodes representing electrical components of the network and links standing for the connections between the nodes through distribution lines. The key topological properties that characterize different types (urban and sub-urban) of distribution networks have been identified and quantified. A novel approach to obtain depth-dependent topological properties has also been developed. Results show that the node degree and edge length related graph properties are a key to characterize different types of electricity distribution networks and depth dependent network properties are able to better characterize the topological properties of urban and sub-urban networks.

Keywords: Complex network analysis; Electricity distribution networks; Low carbon technologies; Medium voltage; Topological properties (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917308632
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:210:y:2018:i:c:p:1101-1112

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.06.113

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:210:y:2018:i:c:p:1101-1112