Energy storage capacity optimization for autonomy microgrid considering CHP and EV scheduling
Zifa Liu,
Yixiao Chen,
Ranqun Zhuo and
Hongjie Jia
Applied Energy, 2018, vol. 210, issue C, 1113-1125
Abstract:
Microgrid is universally accepted as a new approach to solve the global energy problem. In a microgrid, the optimal sizing of energy storage is necessary to ensure reliability and improve economic efficiency. Its sizing results are impacted by uncertainty on natural resources, energy storage as well as load, and it is hard to coordinate these factors. Therefore, microgrid needs more improved strategies for optimal sizing. In this paper, we present a power source sizing strategy with integrated consideration of characteristics of distributed generations, energy storage and loads. Distributed generations consist of wind turbine, photovoltaic panels, combined heat and power generation (CHP) as well as electric vehicles. A two-layer hybrid energy storage system with three storage types (i.e. super capacitor, li-ion battery, lead-acid battery) is constructed based on their power density, energy density, response speed and lifetime, as well as load classification. Power load differences among different time intervals which are supplied by different types of storage leads to allocation of energy storage. An objective function is established based on life cycle cost (LCC) theory, which includes construction cost, operation maintenance cost, recycling profit, environment cost, and energy shortage compensation. Three scenarios, in which particle swarm optimization (PSO) is used for the optimal sizing, modeling and results calculating. From the simulations results analysis, it is found that the proposed model and strategy are feasible and practical.
Keywords: Microgrid; Distributed energy resource; Energy storage (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (46)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917308656
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:210:y:2018:i:c:p:1113-1125
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.07.002
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().