EconPapers    
Economics at your fingertips  
 

From waste to high value utilization of spent bleaching clay in synthesizing high-performance calcium-based sorbent for CO2 capture

Chenglin Su, Lunbo Duan, Felix Donat and Edward John Anthony

Applied Energy, 2018, vol. 210, issue C, 117-126

Abstract: A novel calcium looping (CaL) process integrated with a spent bleaching clay (SBC) treatment is proposed whereby fuels and/or heat from regeneration of SBC provide extra energy for the calcination process, in addition, the regenerated SBC can be used to synthesize enhanced CaO-based sorbents. Different kinds of composite samples were prepared with the regenerated SBC and/or aluminate cement at various doping ratios via a pelletization process. All pellets were subjected to thermogravimetic analyzer tests employing severe reaction conditions to determine the optimal doping ratios and regeneration method for the SBC based sorbents. These results demonstrate that pellets containing combustible components showed higher CO2 uptakes, due to the improved pore structure, which was verified by N2 adsorption measurements. The as-prepared sorbent “L-10PC” (90 wt.% CaO/10 wt.% pyrolytic SBC) achieved a final CO2 uptake of 0.164 g(CO2) g(calcined sorbent)−1 after 20 cycles, which was 67.3% higher than that of natural limestone particle. A new larnite (Ca2SiO4) phase was detected by X-ray diffraction analysis, however the weak diffraction peak associated with it indicated a low content of larnite in the pellets, which produced a smaller effect on performance compared to cement. A synergistic effect was achieved for a sample designated as “L-5PC-10CA” (85 wt.% CaO/5 wt.% pyrolytic SBC /10 wt.% cement), which resulted in the highest final uptake of 0.208 g(CO2) g(calcined sorbent)−1 after 20 cycles. Considering the simplicity of pyrolysis regeneration process and the excellent capture capability of pellets doped by pyrolytic SBC, the proposed system integrating CaL with SBC pyrolysis treatment appears to offer particular promise for further development.

Keywords: CO2capture; Calcium looping; CaO-based sorbent; Spent bleaching clay regeneration; Pelletization (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917315507
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:210:y:2018:i:c:p:117-126

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.10.104

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:210:y:2018:i:c:p:117-126