EconPapers    
Economics at your fingertips  
 

Flexible thermoelectric power generator with Y-type structure using electrochemical deposition process

Trung Nguyen Huu, Toan Nguyen Van and Ono Takahito

Applied Energy, 2018, vol. 210, issue C, 467-476

Abstract: The harvest of thermal energy using the thermoelectric (TE) effect is one of the potential methods for body area network power sources. This paper demonstrates a new approach of an electrochemical deposition process to fabricate self-endurance flexible thermoelectric generators (FTEGs). A novel idea of lateral Y-type TE cells instead of conventional vertical π-type cells is proposed to enhance the performance of the temperature harvest. On the other hand, the thick films of thermoelectric materials (N type-bismuth telluride and P type- antimony telluride) are successfully synthesized. For the first time, the electrochemical deposition of thermoelectric materials is used to integrate thermoelectric materials with a flexible support, where a silicon substrate is used as a sacrificial material. With the temperature difference between the human body (approximately 37°C) and ambient environment (15°C) using natural convection, the device can generate approximately 3µW/cm2 of output power density.

Keywords: Thermoelectric materials; Flexible thermoelectric power generator; Bismuth telluride; Antimony telluride; Electrochemical deposition (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917304956
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:210:y:2018:i:c:p:467-476

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.05.005

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:210:y:2018:i:c:p:467-476