Impact of fuel selection on the environmental performance of post-combustion calcium looping applied to a cement plant
Wouter Schakel,
Christine Roxanne Hung,
Lars-Andre Tokheim,
Anders Hammer Strømman,
Ernst Worrell and
Andrea Ramírez
Applied Energy, 2018, vol. 210, issue C, 75-87
Abstract:
Calcium looping CO2 capture is a promising technology to reduce CO2 emissions from cement production. Coal has been seen as a logical choice of fuel to drive the calcium looping process as coal is already the primary fuel used to produce cement. This study assesses the impact of using different fuels, namely coal, natural gas, woody biomass and a fuel mix (50% coal, 25% biomass and 25% animal meal), on the environmental performance of tail-end calcium looping applied to the clinker production at a cement plant in North-western Europe. Process modelling was applied to determine the impact of the different fuels on the mass and energy balance of the process which were subsequently used to carry out a life cycle assessment to evaluate the environmental performance of the different systems. Using natural gas, biomass or a fuel mix instead of coal in a tail-end calcium looping process can improve the efficiency of the process, as it decreases fuel, limestone and electricity consumption. Consequently, while coal-fired calcium looping can reduce the global warming potential (life cycle CO2 emissions) of clinker production by 75%, the use of natural gas further decreases these emissions (reduction of 86%) and biomass use could results in an almost carbon neutral (reduction of 95% in the fuel mix case) or net negative process (−104% reduction in the biomass case). Furthermore, replacing coal with natural gas or biomass reduces most other environmental impact categories as well, mostly due to avoided impacts from coal production. The level of improvement strongly depends on whether spent sorbent can be utilized in clinker production, and to what extent sequestered biogenic CO2 can reduce global warming potential. Overall, the results illustrate the potential of using alternative fuels to improve the environmental performance of tail-end calcium looping in the cement industry.
Keywords: CO2 capture; Cement plant; Calcium looping; Process modelling; LCA; Biomass (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917315428
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:210:y:2018:i:c:p:75-87
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.10.123
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().