A bat optimized neural network and wavelet transform approach for short-term price forecasting
P.M.R. Bento,
J.A.N. Pombo,
M.R.A. Calado and
S.J.P.S. Mariano
Applied Energy, 2018, vol. 210, issue C, 88-97
Abstract:
In the competitive power industry environment, electricity price forecasting is a fundamental task when market participants decide upon bidding strategies. This has led researchers in the last years to intensely search for accurate forecasting methods, contributing to better risk assessment, with significant financial repercussions. This paper presents a hybrid method that combines similar and recent day-based selection, correlation and wavelet analysis in a pre-processing stage. Afterwards a feedforward neural network is used alongside Bat and Scaled Conjugate Gradient Algorithms to improve the traditional neural network learning capability. Another feature is the method’s capacity to fine-tune neural network architecture and wavelet decomposition, for which there is no optimal paradigm. Numerical testing was applied in a day-ahead framework to historical data pertaining to Spanish and Pennsylvania-New Jersey-Maryland (PJM) electricity markets, revealing positive forecasting results in comparison with other state-of-the-art methods.
Keywords: Artificial neural networks; Bat algorithm; Scaled conjugate gradient; Short-term price forecasting; Similar day selection; Wavelet transform (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (35)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917314782
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:210:y:2018:i:c:p:88-97
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.10.058
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().