Distributed stabilizing modular control for stand-alone microgrids
Despoina I. Makrygiorgou and
Antonio T. Alexandridis
Applied Energy, 2018, vol. 210, issue C, 925-935
Abstract:
A model-based decentralized control design and analysis is presented for varying topology ac autonomous microgrids. Particularly, the proposed method is developed on a modular form by considering local control schemes for each distributed generation (DG) region as it is formulated by a distributed energy resource (DER) among with its controlled power electronic interface and a local load. Each DG region is driven locally by a droop-based outer-loop slow control scheme in cascaded-mode with inner-loop fast current controllers. The proposed inner-loop current controllers are of simple proportional-integral (PI) type and do not involve the standard used parameter-depended decoupling terms. A general method of integrating the different DG regions, with their inner-loop fast controllers involved, is deployed to include any distribution network connecting the DG regions to each other and to external loads. To confront the challenging issue of proving stability and convergence to the desired equilibrium of such a complex, decentralized controlled microgrid, an advanced Lyapunov-based technique is effectively applied on the model constructed. Hence, the main novelty of the present approach is that it can be used as a flexible general tool, independently from the system scaling, parameters, operating conditions and the intermittent nature of the different DERs, since the modular and open model-based analysis enables expandability to any microgrid structure instead of considering all the DG units being connected in parallel or in a common bus. The overall scheme is evaluated by examining a typical stand-alone microgrid and the results verify the theoretical analysis indicating stability and smooth system performance without adverse impacts between the different parts.
Keywords: AC microgrids; Frequency control; Voltage control; Droop-controller; Stability; Lyapunov techniques (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917309571
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:210:y:2018:i:c:p:925-935
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.07.085
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().