Optimal coordinated energy dispatch of a multi-energy microgrid in grid-connected and islanded modes
Zhengmao Li and
Yan Xu
Applied Energy, 2018, vol. 210, issue C, 974-986
Abstract:
This paper proposes a system-wide optimal coordinated energy dispatch method for a multi-energy microgrid in both the grid-connected and islanded modes. The studied microgrid consists of multiple energy carriers covering the controllable generation units (fuel cell, electric boiler, combined cooling, heat and power plant and electric chiller), uncontrollable generation units (wind turbine and photovoltaic cell) and energy storage devices (battery storage, heat storage tank and ice storage tank). The proposed energy dispatch method aims to minimize the microgrid net operating cost and enhance the dispatch flexibility in supplying power, heat and cooling in the day-ahead energy market. For both the grid-connected and islanded microgrid, their dispatch models are formulated as the mixed-integer linear programming problems, which can be efficiently solved by the commercial solvers. Comprehensive case studies are performed to evaluate the effectiveness of the proposed method and then compared with the traditional dispatch methods which supply power and heat/cooling energies separately. Simulation results demonstrate that the proposed method can achieve much higher operating efficiency.
Keywords: Multi-energy microgrids; Combined cooling; Heat and power plant; System–wide optimal coordinated dispatch; Mixed-integer linear programming; Net operating cost (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (80)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917312230
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:210:y:2018:i:c:p:974-986
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.08.197
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().