EconPapers    
Economics at your fingertips  
 

Day ahead optimization of an electric vehicle fleet providing ancillary services in the Los Angeles Air Force Base vehicle-to-grid demonstration

Nicholas DeForest, Jason S. MacDonald and Douglas R. Black

Applied Energy, 2018, vol. 210, issue C, 987-1001

Abstract: The Los Angeles Air Force Base Electric Vehicle Demonstration is a currently ongoing vehicle-to-grid demonstration project with the objective of minimizing the cost of operation of a fleet of approximately 30 electric vehicles (EVs) through participation in the California Independent System Operator (CAISO) frequency regulation market. To accomplish this, a hierarchical control system has been developed to optimize, plan, and control the charging, market bidding, and response to grid system operator control of the EVs. This paper presents an overview of the day-ahead optimization model component of the hierarchy. The model is a mixed integer linear program that optimizes daily EV charging and regulation capacity bids strategies in order to minimize operation costs and maximize ancillary service revenue. A deterministic approach is used due to several practical concerns of the demonstration project, including model complexity and the availability and uncertainty of input data in day-ahead decision making, and the limited size of the fleet. The model includes additional user-defined parameters to tune model behavior to better match real-world conditions and minimize the risks of uncertainty.

Keywords: Electric vehicles; Vehicle to grid; Demonstration; Ancillary services; Frequency regulation; Optimization (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (37)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917309418
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:210:y:2018:i:c:p:987-1001

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.07.069

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:210:y:2018:i:c:p:987-1001