Analytical investigation of autoencoder-based methods for unsupervised anomaly detection in building energy data
Cheng Fan,
Fu Xiao,
Yang Zhao and
Jiayuan Wang
Applied Energy, 2018, vol. 211, issue C, 1123-1135
Abstract:
Practical building operations usually deviate from the designed building operational performance due to the wide existence of operating faults and improper control strategies. Great energy saving potential can be realized if inefficient or faulty operations are detected and amended in time. The vast amounts of building operational data collected by the Building Automation System have made it feasible to develop data-driven approaches to anomaly detection. Compared with supervised analytics, unsupervised anomaly detection is more practical in analyzing real-world building operational data, as anomaly labels are typically not available. Autoencoder is a very powerful method for the unsupervised learning of high-level data representations. Recent development in deep learning has endowed autoencoders with even greater capability in analyzing complex, high-dimensional and large-scale data. This study investigates the potential of autoencoders in detecting anomalies in building energy data. An autoencoder-based ensemble method is proposed while providing a comprehensive comparison on different autoencoder types and training schemes. Considering the unique learning mechanism of autoencoders, specific methods have been designed to evaluate the autoencoder performance. The research results can be used as foundation for building professionals to develop advanced tools for anomaly detection and performance benchmarking.
Keywords: Autoencoder; Unsupervised data analytics; Anomaly detection; Building operational performance; Building energy management (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (31)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917317166
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:211:y:2018:i:c:p:1123-1135
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.12.005
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().