EconPapers    
Economics at your fingertips  
 

Thermo-mechanical analysis of microcapsules containing phase change materials for cold storage

Qinghua Yu, Fideline Tchuenbou-Magaia, Bushra Al-Duri, Zhibing Zhang, Yulong Ding and Yongliang Li

Applied Energy, 2018, vol. 211, issue C, 1190-1202

Abstract: Microencapsulated phase change material slurries (MEPCMSs) offer a potentially efficient and flexible solution for cryogenic-temperature cold storage. In this paper, the phase change material (PCM) microcapsules prepared to form MEPCMSs for cryogenic-temperature cold storage consist of Dowtherm J (DJ) as core material and melamine formaldehyde (MF) as primary shell material. DJ is an aromatic mixture with diethylbenzene as the main component. Composite shell materials are adopted to avoid cracking by adding aluminium oxide (Al2O3) nanoparticles or copper (Cu) coating into/on MF shell. In order to explore the heat transfer behaviour and mechanical stability of the microcapsules during the solidification process of PCM, a thermo-mechanical model is established by taking into account of energy conservation, pressure-dependent solid-liquid equilibria, Lamé’s equations and buckling theory. Based on the proposed model, the effects of shell thickness, shell compositions and microcapsule size are therefore studied on the variations of pressure difference, freezing point, and latent heat. The cause of shell deformation is clearly explained and the shell buckling modes are predicted using the model, which agree well with the experimental observations. The critical core/shell size ratios of avoiding buckling are proposed for the microcapsules with different compositions. Simultaneously incorporation of Al2O3 nanoparticles and Cu coating into/on MF shell can markedly enhance the resistant to buckling. In addition, special attention is paid to cold energy storage capacity of MEPCMSs, which has considerable superiority compared to packed pebble beds.

Keywords: Phase change materials; Microencapsulation; Solidification; Shell buckling; Cold storage (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191731735X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:211:y:2018:i:c:p:1190-1202

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.12.021

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:211:y:2018:i:c:p:1190-1202