EconPapers    
Economics at your fingertips  
 

Vanadium dioxide for energy conservation and energy storage applications: Synthesis and performance improvement

Shancheng Wang, Kwadwo Asare Owusu, Liqiang Mai, Yujie Ke, Yang Zhou, Peng Hu, Shlomo Magdassi and Yi Long

Applied Energy, 2018, vol. 211, issue C, 200-217

Abstract: Vanadium dioxide (VO2) is one of the most widely studied inorganic phase change material for energy storage and energy conservation applications. Monoclinic VO2 [VO2(M)] changes from semiconducting phase to metallic rutile phase at near room temperature and the resultant abrupt suppressed infrared transmittance at high temperature makes it a potential candidate for thermochromic smart window application to cut the air-condition usage. Meanwhile proper electrical potential, stable structure and good interaction with lithium ions make metastable VO2 [VO2(B)] an attractive material for fabrication of electrodes for batteries and supercapacitors. However, some long-standing issues have plagued its usage. In thermochromic application, high transition temperature (τc), low luminous transmittance (Tlum) and undesirable solar modulation ability (△Tsol) are the key problems, while in energy storage applications, short cycling lifetime and complex three-dimension microstructure are the major challenges. The common methods to produce VO2 polymorph are physical vapour deposition (PVD), chemical vapour deposition (CVD), sol-gel synthesis, and hydrothermal method. CVD is an intensively studied method due to its ability to produce uniform films with precise stoichiometry, phase and morphology control. This paper reviews the various CVD techniques to produce VO2 with controlled phases and the ternary diagram shows the relationship between film stoichiometry and various process conditions. The difference between the various CVD systems are commented and the process window to produce VO2 are tabulated. Some strategies to improve VO2′s performance in both energy conservation and energy storage applications are discussed.

Keywords: Vanadium dioxide; Chemical vapor deposition; Atomic layer deposition; Smart-window; Lithium-ion battery; Supercapacitor (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917316148
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:211:y:2018:i:c:p:200-217

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.11.039

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:211:y:2018:i:c:p:200-217