Synergistic effects in steam gasification of combined biomass and plastic waste mixtures
K.G. Burra and
A.K. Gupta
Applied Energy, 2018, vol. 211, issue C, 230-236
Abstract:
Steam gasification of combined biomass and plastics at different mass ratios of biomass to plastic was investigated in a semi-batch reactor at 1173 K and atmospheric pressure using different types of plastics. The specific plastics examined were black polycarbonate (BPC), polyethylene-terephthalate (PET), and polypropylene (PP). The chemical composition of the syngas yield evolved measured using a microGC revealed synergistic effects on the role of biomass and plastics during gasification. The observed synergy was quantified from a direct comparison of the results on cumulative gas yields from biomass-plastics mixtures as compared to the corresponding weighted aggregate results from the gasification of separate feedstock components. The results showed that the total syngas as well as H2, CO, and CO2 yields enhanced using mixtures, while the light hydrocarbon gas yields reduced in the order of PP > BPC > PET. The increase of H2 and CO with the reduction in hydrocarbon yield revealed synergistic enhancements from the secondary steam reforming reactions. TGA data from co-pyrolysis of BPC and PET with biomass revealed significant interaction while no such interaction was observed with PP. The carbon conversion and energy efficiency results showed enhancement for the BPC case. Increase in product gas yield suggests greater reformation of biomass plastic mixtures during gasification. Further studies are required to understand fundamental reaction mechanisms as well as demonstrative gasifier studies to understand both the kinetics and practical feasibility.
Keywords: Steam gasification; Co-gasification of plastics and biomass; Polycarbonate; Polyethylene terephthalate; Polypropylene; Waste to syngas (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (45)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917315702
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:211:y:2018:i:c:p:230-236
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.10.130
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().