EconPapers    
Economics at your fingertips  
 

An evaluation of anaerobic co-digestion implementation on New York State dairy farms using an environmental and economic life-cycle framework

J.G. Usack, L. Gerber Van Doren, R. Posmanik, R.A. Labatut, J.W. Tester and L.T. Angenent

Applied Energy, 2018, vol. 211, issue C, 28-40

Abstract: Anaerobic digestion systems on dairy farms in New York State rely on gate-fee revenues from co-digestion to ensure economic viability. Yet, because gate fees are paid on a volumetric (or weight) basis, farmers have been compelled to accept large waste volumes. When these wastes are co-digested at rates exceeding the design capacity of the digester, potentially significant technical, environmental, and economic consequences may arise. To better understand these trade-offs, we performed a combined environmental life-cycle and economic assessment with uncertainty analysis. We used the Anaerobic Digestion Model #1 to simulate the co-digestion process for 10 potential co-substrates that were hypothetically mixed with dairy manure throughout a range of loading rates. These simulation results demonstrated the need to include a robust anaerobic digestion model to capture complex process dynamics and loading limits. Results also showed that while higher loading rates were more economically favorable, they caused considerable reductions in the degree of waste stabilization during the digestion process, which dramatically increased downstream methane emissions (e.g., >450%) on the farm compared to manure-only digestion. Regardless, most co-digestion scenarios led to a net reduction in total life-cycle emissions compared to manure only and not digesting the co-substrate due mainly to greater electric power production and synthetic fertilizer replacement. Economically, gate-fee revenue was the most important contributor to profitability, substantially outweighing the revenue from electric power production, while also compensating for the increased handling costs of the added waste volume. Ultimately, the model clearly demonstrated the important environmental and economic implications arising from current anaerobic digestion implementation practices and policy in New York State. In addition, the model highlighted key stages in the system life-cycle, which was used to instruct and recommend immediately actionable policy changes.

Keywords: Biogas; Co-digestion; Dairy; Economic analysis; Life-cycle assessment; Methane emissions (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917316070
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:211:y:2018:i:c:p:28-40

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.11.032

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:211:y:2018:i:c:p:28-40