EconPapers    
Economics at your fingertips  
 

Combustion behaviors and pollutant emission characteristics of low calorific oil shale and its semi-coke in a lab-scale fluidized bed combustor

Yu Yang, Quanhai Wang, Xiaofeng Lu, Jianbo Li and Zhuo Liu

Applied Energy, 2018, vol. 211, issue C, 638 pages

Abstract: Experiments on co-combustion of oil shale and its semi-coke were conducted in a lab-scale bubbling fluidized bed. Oil shale blend ratios from 0 to 100% at the interval of 25% were separately tested at 800, 850 and 900 °C, to clarify combustion behaviors and pollutant emission characteristics. Results indicated that as oil shale mass fraction increased, the combustion efficiency of samples firstly increased, and then decreased. Positive synergistic relationships between oil shale and its semi-coke were identified. The addition of oil shale could help reducing the SO2 emissions during co-combustion, while the NO emissions showed no significant change. Meanwhile, with temperature rising, the CO concentrations of samples with lower oil shale blend ratios (0, 25% and 50%) slightly decreased, on the contrary, for higher oil shale blend ratios (75% and 100%), the CO concentrations increased, however, the SO2 and NO concentrations got a monotonic increase for all the samples. Hence, from the view point of combustion efficiency and pollutant emission performances, it was recommended that the oil shale blend ratio was 50% and the bed temperature was about 800 °C. Besides, the ultra-low emission of SO2 and NO emitted from the co-combustion of oil shale and semi-coke were able to be achieved by adopting appropriate pollutant control measures.

Keywords: Oil shale; Oil shale semi-coke; Combustion behaviors; Pollutant emission and control characteristics; Fluidized bed combustor (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917314927
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:211:y:2018:i:c:p:631-638

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.10.071

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:211:y:2018:i:c:p:631-638