The techno-economic analysis of a hybrid zero-emission building system integrated with a commercial-scale zero-emission hydrogen vehicle
Sunliang Cao and
Kari Alanne
Applied Energy, 2018, vol. 211, issue C, 639-661
Abstract:
This study conducts a techno-economic analysis to seek the feasibility to integrate a zero-emission building (ZEB) with a commercial-scale hydrogen vehicle (HV). The parametric analysis is conducted in 16 simulation groups with respect to the equipment options of the solar thermal collectors, the ground source heat pump (GSHP) and the HV refueling methods, while each group contains a series of cases with a range of on-site renewable electricity (REe) generation capacities between 0 and 16 kW. The assessment criteria include the annual operational equivalent CO2 emission and the relative net present value (NPVrel). By the parametric analysis, the sets of the non-dominated cases within the cloud of the analysed solutions have been comprehensively investigated regarding the aims to reduce the emission and the cost. With respect to the criteria of the equivalent emission and NPVrel under the normal market scenario of the electrolyzer (5000 EUR/kW), none of the cases with the on-site H2 system can be identified as superior to those without the on-site H2 system. The non-dominated cases will mainly happen to those with a 0–9.61 NOCT kW photovoltaic (PV) panel and a 5 kW GSHP but without any solar thermal collector, which have a range of NPVrel between −4115 and 12,556 EUR along with a range of emission between 19.72 and 6.65 kg CO2,eq/m2 a. However, by reducing the electrolyzer cost to the lowest market scenario of 2000 EUR/kW, parts of the cases with the on-site H2 system start to challenge those without the on-site H2 system. Moreover, the change of the emission factor of the H2 fuel from 0.267 to 0.141 kg CO2,eq/kWhLHV will not alter the set of the overall non-dominated cases, but will uniformly reduce the annual emission of these cases by a magnitude of 3.83 kg CO2,eq/m2 a.
Keywords: Zero emission building; Zero emission vehicle; Zero energy building; On-site renewable energy; Hydrogen vehicle; Building and transportation (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917316781
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:211:y:2018:i:c:p:639-661
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.11.079
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().