EconPapers    
Economics at your fingertips  
 

Complementary enhanced solar thermal conversion performance of core-shell nanoparticles

Meijie Chen, Yurong He, Xinzhi Wang and Yanwei Hu

Applied Energy, 2018, vol. 211, issue C, 735-742

Abstract: In this study, the properties of various types of core-shell nanoparticles (NPs) were evaluated using the finite difference time domain (FDTD) method towards the enhancement of solar absorption performance. Results showed that the resonance wavelength of SiO2@Au NPs lay in the 540–900 nm range, covering the near-infrared and visible regions. The resonance wavelength of SiO2@Ag NPs lay in the 390–830 nm range, covering the entire visible region. SiO2@Au nanofluid with a core-shell ratio of φ = 0.2 exhibited the highest solar absorption efficiency with 64% less Au consumption compared to pure Au NPs. For mixed nanofluids, the mixtures featuring core-shell ratios of 0.1 and 0.6 with mixing ratios of 0.5 for SiO2@Au and 0.6 for SiO2@Ag gave the highest absorption efficiencies. In addition, the peak solar absorption efficiency of a mixed nanofluid of SiO2@Au (φ = 0.1) and SiO2@Ag (φ = 0.4) with a mixing ratio of 0.58 was as high as 94.4%. Solar thermal conversion experiments revealed that, under the same conditions, a Au-decorated SiO2 nanofluid showed a comparable efficiency to the calculated solar absorption efficiency of the SiO2@Au core-shell nanofluid (∼95.2%); it was as high as 95.9%, higher than those of Au NPs and SiO2 NPs. These results showed that adjusting the core-shell ratios and tuning the mixing ratios of different nanofluids are two efficient methods to enhance the solar absorption efficiencies of SiO2@Au and SiO2@Ag NPs under the optimal conditions.

Keywords: Solar thermal conversion; Core-shell nanoparticle; Finite difference time domain; Optical properties (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917316860
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:211:y:2018:i:c:p:735-742

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.11.087

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:211:y:2018:i:c:p:735-742