Optimisation analysis of PCM-enhanced opaque building envelope components for the energy retrofitting of office buildings in Mediterranean climates
Ylenia Cascone,
Alfonso Capozzoli and
Marco Perino
Applied Energy, 2018, vol. 211, issue C, 929-953
Abstract:
The energy retrofitting of existing buildings is of major importance to reach the energy sustainability target set by the European Union (EU) for 2020. Innovative retrofitting solutions can involve the adoption of Phase Change Materials (PCMs), but an effective use of PCM in buildings requires an appropriate selection of the thermo-physical properties, quantity and position of the PCMs. To guarantee a good functioning of a PCM and ensure economic feasibility, an optimisation of PCM use is advisable. In the present paper, multi-objective optimisation analyses for the energy retrofitting of office buildings with PCM-enhanced opaque building envelope components are presented. A retrofitting intervention on either the external or internal side of the opaque envelope was considered, and a maximum of two PCM layers with different melting temperatures were selected and placed in different positions within the wall. Two sets of objective functions were minimised; first, primary energy consumption and global costs, and then the building energy needs for heating and cooling and investment costs. The search variables included the thickness and thermo-physical properties of the PCM layers, the window type, the insulation and internal lining materials, the wall configuration and U-value. In order to provide a robust methodology to drive designers towards an informed choice of the final retrofitting strategy, post-optimisation analyses were additionally carried out to investigate the variable values that led to the optimal solutions. Interesting and non-trivial information was obtained. The optimal thermo-physical properties of PCMs were found to be affected in particular by the operation of the HVAC system.
Keywords: Energy retrofitting; Multi-objective optimization; Phase Change Material; Building envelope; Building energy performance; Genetic algorithm (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191731680X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:211:y:2018:i:c:p:929-953
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.11.081
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().