EconPapers    
Economics at your fingertips  
 

Effects of porous media insert on the efficiency and power density of a high pressure (210 bar) liquid piston air compressor/expander – An experimental study

Jacob Wieberdink, Perry Y. Li, Terrence W. Simon and James D. Van de Ven

Applied Energy, 2018, vol. 212, issue C, 1025-1037

Abstract: A high pressure, efficient and power dense air compressor/expander is a critical element in an isothermal compressed air energy storage (ICAES) system. Heat transfer is often the limiting factor in realizing efficient and power dense compression and expansion processes. Liquid piston compressor/expanders with porous media inserts have been proposed, in which the porous media serves as heat exchangers. While this concept has been studied through modeling and simulation, it has only been validated experimentally at low pressures (10 bar). This paper studies experimentally the effect of porous media in a high pressure (7–210 bar) liquid piston air compressor/expander, which is the proposed pressure for the ICAES system. Cases with the porous media uniformly distributed and non-uniformly distributed in the chamber are studied with various compression and expansion rates. Results show that at 93% efficiency, the uniformly distributed 2.5 mm interrupted plate porous medium increases power density by 10 times in compression and 20 times in expansion; or at the same power, efficiency is increased by 13% in compression and 23% in expansion. Moreover, the porous medium, if deployed at the top of the chamber, is shown to be more effective than if deployed at the bottom. The results indicate that the added surface area provides the dominant benefits but the porous media also increase the heat transfer coefficient at the same efficiency regime. These results are consistent with and extend the findings from previous low pressure experiments.

Keywords: Liquid piston; Porous media; Gas compression; Gas expansion; Isothermal; Compressed air energy storage (CAES) (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917318160
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:212:y:2018:i:c:p:1025-1037

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.12.093

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:212:y:2018:i:c:p:1025-1037