A single particle model with chemical/mechanical degradation physics for lithium ion battery State of Health (SOH) estimation
J. Li,
K. Adewuyi,
N. Lotfi,
R.G. Landers and
J. Park
Applied Energy, 2018, vol. 212, issue C, 1178-1190
Abstract:
State of Health (SOH) estimation of lithium ion batteries is critical for Battery Management Systems (BMSs) in Electric Vehicles (EVs). Many estimation techniques utilize a battery model; however, the model must have high accuracy and high computational efficiency. Conventional electrochemical full-order models can accurately capture battery states, but they are too complex and computationally expensive to be used in a BMS. A Single Particle (SP) model is a good alternative that addresses this issue; however, existing SP models do not consider degradation physics. In this work, an SP-based degradation model is developed by including Solid Electrolyte Interface (SEI) layer formation, coupled with crack propagation due to the stress generated by the volume expansion of the particles in the active materials. A model of lithium ion loss from SEI layer formation is integrated with an advanced SP model that includes electrolytic physics. This low-order model quickly predicts capacity fade and voltage profile changes as a function of cycle number and temperature with high accuracy, allowing for the use of online estimation techniques. Lithium ion loss due to SEI layer formation, increase in battery resistance, and changes in the electrodes' open circuit potential operating windows are examined to account for capacity fade and power loss. In addition to the low-order implementation to facilitate on-line estimation, the model proposed in this paper provides quantitative information regarding SEI layer formation and crack propagation, as well as the resulting battery capacity fade and power dissipation, which are essential for SOH estimation in a BMS.
Keywords: Single particle model; Capacity degradation; State of health; Power loss; On-line estimation; Battery management systems (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (72)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918300114
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:212:y:2018:i:c:p:1178-1190
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.01.011
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().