Demonstration of thermal borehole enlargement to facilitate controlled reservoir engineering for deep geothermal, oil or gas systems
Michael A. Kant,
Edoardo Rossi,
Jonas Duss,
Florian Amann,
Martin O. Saar and
Philipp Rudolf von Rohr
Applied Energy, 2018, vol. 212, issue C, 1509 pages
Abstract:
The creation of deep reservoirs for geothermal energy or oil and gas extraction is impeded by insufficient stimulation. Direction and extension of the created fractures are complex to control and, therefore, large stimulated and interconnected fracture networks are difficult to create. This lack of control and efficiency poses an inherent risk of uneconomic reservoirs, due to insufficient heat-sweep surfaces or hydraulic shortcuts. Therefore, we present a technique, which locally increases the cross section of a borehole by applying a thermal spallation process to the sidewalls of the borehole. By controlled and local enlargement of the well bore diameter, initial fracture sources are created, potentially reducing the injection pressure during hydraulic stimulation, initiating fracture growth, optimizing fracture propagation and increasing the number of accessible preexisting fractures. Consequently, local thermal borehole enlargement reduces project failure risks by providing better control on subsequent stimulation processes. In order to demonstrate the applicability of the suggested technique, we conducted a shallow field test in an underground rock laboratory. Two types of borehole enlargements were created in a 14.5 m deep borehole, indicating the feasibility of the technology to improve the productivity of geothermal, oil and gas reservoirs.
Keywords: Enhanced geothermal systems; Unconventional oil and gas; Reservoir engineering; Hydraulic stimulation/fracturing; Thermal spallation drilling; Bore hole enlargement (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918300096
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:212:y:2018:i:c:p:1501-1509
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.01.009
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().