EconPapers    
Economics at your fingertips  
 

A comparative study of model-based capacity estimation algorithms in dual estimation frameworks for lithium-ion batteries under an accelerated aging test

Shi Li, Stefan Pischinger, Chaoyi He, Liliuyuan Liang and Michael Stapelbroek

Applied Energy, 2018, vol. 212, issue C, 1522-1536

Abstract: The actual capacity of a battery is an essential indicator for calculating both the state of health and the remaining electric driving range. Numerous model-based techniques employing adaptive filters have been proposed for the online capacity estimation. However, in these filter-based methods, the impacts of filter configurations and the algorithm effectiveness at various aging stages have not yet been fully investigated. To address this gap and to evaluate the performance of three most popular algorithms, i.e. the extended Kalman filter, the particle filter, and the least-squares-based filter, they are coupled with an SOC estimator in dual frameworks. The characterization and accelerated aging tests have been carried out on a lithium-ion battery. After investigating the possible impacts from the configurations, the tracking accuracy, the robustness against the uncertainty of the initial capacity and the long-term performance of the three algorithms are compared. Furthermore, their computational efforts are extensively assessed regarding complexity, simulation runtime as well as compiled code size utilizing an automotive prototype hardware. The results show that the extended Kalman filter is the least sensitive to model degradation with the lowest computational effort; the particle filter shows the fastest convergence speed but has the highest computational effort; and the least-squares-based filter has an intermediate behavior in both long-term performance and computational effort.

Keywords: Lithium-ion battery; Capacity estimation; Particle filter; Extended Kalman filter; Recursive least square; Lifetime performance (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918300084
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:212:y:2018:i:c:p:1522-1536

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.01.008

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:212:y:2018:i:c:p:1522-1536